
Kernel Level Security

Philippe Biondi

<phil@secdev.org>

<philippe.biondi@arche.fr>

26th September 2003

Abstract

Security is a problem of trust. Having a system that offers services to
Internet and that can be trusted is very hard to achieve. Classical security
models focus on the physical limit of the machine. We will see that it can
be interesting to move the trust limit between user space and kernel space
and that it is still possible to enforce a security policy from this trusted
place.

We will see some practical ways to have that work done in a modern
monolithic kernel (Linux), with some small code examples.

We will also see some other practical aspects with a review of some imple-
mentations that exist for Linux kernels, with a focus on the Linux Security
Modules (LSM) framework.

Contents

1 Why ? 2

1.1 Context . 2
1.2 A new security model . 3

1.2.1 Interlude : the mice and the cookies 3
1.2.2 Security models comparisons 4

1.3 Conclusion . 6

2 How ? 7

2.1 Taxonomy of action paths . 7
2.1.1 Targeting storage or PROM directly 8
2.1.2 Targeting an application directly 8
2.1.3 Targeting storage or PROM through an application . . . 9
2.1.4 Targeting an application through an accessible application 10
2.1.5 Targeting the kernel . 10
2.1.6 Synthesis . 11

1

2.2 Defending kernel space . 11
2.2.1 Attacks coming through the action vehicle 11
2.2.2 Attacks coming from user space 11

2.3 Filtering in kernel space . 12
2.3.1 What to protect . 12
2.3.2 How to protect . 13

3 Implementations 17

3.1 Existing projects . 17
3.1.1 pH: process Homeostasis 17
3.1.2 Openwall . 18
3.1.3 GrSecurity . 18
3.1.4 Medusa DS9 . 18
3.1.5 Systrace . 19
3.1.6 RSBAC . 19
3.1.7 LIDS . 19
3.1.8 LoMaC . 19
3.1.9 SE Linux . 20

3.2 Linux Security Modules . 20
3.2.1 Security hooks . 21
3.2.2 Stacking modules . 21
3.2.3 Testing the LSM framework consistency 21

1 Why ?

1.1 Context

The IT industry faces lots of threats. There is no need to explicit the motivations
to be protected from attacks, may they be so benign as web pages graffitis or
more harmful like data steals, resources steals, vandalism, denial of service,
tampering operations, etc.

The three fundamental concepts that use to describe the directions we must
look at to manage security are confidentiality, integrity and availability.

To enforce these three concepts, we define a set of rules describing the way we
handle, protect and distribute information. This is called a security policy.

The security policy is not a technical point of view, but organizational rules
that need technical mechanisms to be enforced. We can for example use:

• Tripwire, AIDE, bsign, debsums, . . . for integrity checks

• SSH, SSL, TLS, IPSec, GnuPG, . . . for confidentiality

• Passwords, RSA keys, secure badges, biometric access controls, . . . for au-
thentication

2

Now the problem is to be confident about each of these technical mechanisms
working as they should. Can we be confident that our Tripwire or SSH is not
trojaned ? Can we trust our GnuPG ? And, if they work as they are intended to
(i.e., if they are not trojaned), how much does they depend on their environment
to fulfill their security task ? What if the kernel does not read the key ring
GnuPG asked for but one provided by an intruder ?

Security is a matter of trust. As we have just seen, trusting a brick is not
sufficient. We must also have an at least equivalent trust in the underlying
bricks. If this is not true, we will soon end with a castle built upon sand.

The other problem is that there are a lot of bricks in a castle. Trusting a
brick cost a lot, in men, time and money. If there are too many bricks, the
construction may become so complex that no human being can understand it
entirely, so complex that it will be very probable that human errors or design
errors happen.

1.2 A new security model

1.2.1 Interlude : the mice and the cookies

Let’s consider we have some cookies in a house. Let’s also imagine that our
house, a very old mansion, also hosts mice. We would like to keep our cookies
until tomorrow’s breakfast, so that we have to prevent mice from eating them.

What can we do for that ?

Solution 1 We opt to protect the kitchen. The cookies are in the kitchen, so,
if we prevent mice from penetrating into the kitchen, our cookies are safe. This
is theoretically perfect, but :

• there are too many variables to cope with (lots of windows, holes in the
walls, . . .)

• we cannot know about all the holes to lock them (especially the one behind
the dish machine)

• we cannot be sure there were not any mice in the kitchen before we closed
the holes

Solution 2 We choose to put the cookies in a metal box. This solution, while
been theoretically perfect too, has the following practical advantages :

• we, human beings, can grasp the entire problem

• we can “audit” the box

3

Speaking about the cookies security, we can far more trust the second solution.
So, if only cookies are important to us (we will leave the mansion after the
breakfast), this should be the retained solution, both in terms of effectiveness
and in terms of costs.

We will in fact sacrifice the kitchen for the cookies sake. This seems to be
painful (especially for our mate that cooks a lot). But reducing the perimeter
of the problem help us approach the perfect intrusion prevention1 technique.
Complexity leads to insecurity and must be avoided.

1.2.2 Security models comparisons

We will now focus on the security of a machine.

The usual security model is to consider that the limit between friends and
enemies is the physical limit of the box. Anything running on the box is trusted,
and everything is build with this assumption (see fig. 1). So, the last limit
against intruders, the one that make us surrender if it is broken, is the physical
limit of the machine.

trustedhardware

kernel space
space

user

sendmail

tripwire

ssh

Figure 1: Usual security model of trust

But this limit is very large. There are a lot of applications to take in account,
lots of lines of code, lot of entry points, really too much things for what we,
human beings, can handle.

Moreover, the fact that everything has to trust everything in the box (with
relative separation, though) goes against the compartmentalization principle.
This security principle says that things that can run independently should be
protected one from the other, just in case one falls to the control of the enemy.

Let’s for example imagine that someone cracks into sendmail (see fig. 2). As
the perimeter is very large, this is as probable as the penetration of the kitchen

1Intrusion prevention, i.e. the fact of doing things so that intrusion cannot happen, is
an anti-intrusion technique [HB95], considered as the most effective one, but also the most
unreachable one.

4

by a mouse. In this model, the barrier is at the physical limit of the box. So
she is in. She now 0wns a process in which we trust. Nothing is done, now, to
prevent her to attack other processes, data, kernel, etc.

trustedhardware

kernel space
space

user

sendmail

tripwire

ssh

Figure 2: Break-in with usual security model

Now, if we reduce the perimeter to protect, for it to become the kernel space/user
space separation (see fig. 3), it looks more like the metal box. There are very
few entry points from user space to kernel space. There are far less lines of code
that run into our trusted world.

trustedhardware

kernel space
space

user

sendmail

tripwire

ssh

untrusted

Figure 3: Kernel security model of trust

If someone breaks into the machine, it is bad, but not as bad as previously,
because the physical limit of the machine is not our last defense line anymore.
We still can defend ourselves (see fig. 4).

5

trustedhardware

kernel space
space

user

sendmail

tripwire

ssh

untrusted

Figure 4: Break-in with kernel security model

Moreover, from where we are (kernel space) we can enforce compartmentaliza-
tion.

1.3 Conclusion

We have just seen that a new way of protecting a machine can be achieved
by reducing the last line of defense to the limit between kernel space and user
space, instead of the usual physical limit. This does not mean that the physical
limit has not to be defended anymore. This means that the physical limit must
not be the last one. We have to care about protecting the kernel, because we
will invest him with a new role : be our last defense to protect the machine and
enforce compartmentalization between processes and data.

So, to use this model, we have to modify the kernel in order for it to able
to protect itself from outside (user space and everything outside of the physical
limit of the machine). This has to be done to the point that we become confident
that the kernel will do what we want, and not what an attacker would ask it
to do. In particular, this means that, once the kernel has received its orders, it
must not listen to anyone, even root, and carry on its mission. For the kernel,
root must not be trusted anymore. The orders come from another entity, that
can authenticate herself directly to the kernel, without the kernel relying on
something else than itself to perform the authentication.

The new mission that is given to the kernel by this entity is to protect other
programs and data related to or involved in the security policy. The kernel must
be modified to be able to fulfill this new role.

6

2 How ?

We will begin by identifying all the available targets on a machine an all the
possible ways to compromise them. Then we will follow with what has to be
done to protect the kernel. We will end by the ways the kernel can enforce
compartmentalization.

2.1 Taxonomy of action paths

The aim of this part is to identify all the possibles paths that lead to a com-
promise of something. We can model the different components as shown on the
figure 5.

physical security physical security

action vehicle storage PROM, FPGA,...

kernel

application applicationapplication

MMU

human

Figure 5: All possible targets

We have at the top, an human being, that will ignite the attack ; machines do
not fight by themselves yet. Targets are represented with a green cross : storage
devices, like hard disks or flash memories, can be attacked to steal information
or resources. PROM or FPGA devices can be trojaned. Applications in memory
can have informations like passwords to leak. Kernel can also be trojaned. So,
we have all the targets, and some motivations to attack them.

The action vehicle component is an interface between real world and logical
world, for example a keyboard or a network interface card.

The rounded boxes are for security barriers. Some are physic, like the shielded
walls that prevent you from stealing the hard disk, other are logic, like the
boundaries enforced by the memory management unit (MMU).

In the following, we will identify thirteen actions paths that can be used to
attack a target.

7

2.1.1 Targeting storage or PROM directly

There exists a way to attack storage and PROM devices directly. It means that
we have physical access to the box. We use a screwdriver and can extract the
disk or the chip to do what we have to do. These are action paths 1 and 2.
They have to go through a physical security layer.

physical security physical security

action vehicle storage PROM, FPGA,...

kernel

application applicationapplication

MMU

human

1

2

Figure 6: Targeting storage or PROM directly

Example: The cracker breaks a lock to reach the box, unscrew it, steal an
hard disk and steal all the data present on it.

2.1.2 Targeting an application directly

To reach an application, one need to use an action vehicle, which can be a
keyboard or a network interface card. This is the path 3, which has to go
through a physical security layer. The action vehicle will forward the action to
the kernel (4), which in turn, may redirect it (5) to its final destination : an
application.

physical security physical security

action vehicle storage PROM, FPGA,...

kernel

application applicationapplication

MMU

human
3

4

5

Figure 7: Targeting an application directly

8

Example: The cracker breaks a lock to reach a keyboard. Now that she is on
console, every key she types is forwarded by the kernel to the application who
owns the current tty.

Example: The cracker dials to a modem that will make her be in direct
relation with the kernel. The kernel will transmit its stimuli to the application
listening to the serial tty. If it is not protected, it can already leak lot of
informations, or can be reconfigured or infected.

Example: The cracker connects to TCP port through Internet. The kernel get
her packets, and allow them to reach the application listening to the TCP port.
The application is vulnerable to a buffer overflow, and she injects a shellcode to
modify slightly the daemon behaviour.

2.1.3 Targeting storage or PROM through an application

If the application has no value, or cannot be exploited, it is still possible to
have it do things for us. Through action path (3,4,5), we can give our orders to
the application that will then access hard disk through kernel (6,7) or PROM
through kernel (8,9). Direct accesses to hardware, like kernel does, are not
possible because of the CPU running in kernel mode. Every direct access must
be authorized by the kernel, which is the only one that can modify CPU access
lists (IDT, GDT and LDT on Intel architectures).

physical security physical security

action vehicle storage PROM, FPGA,...

kernel

application applicationapplication

MMU

human

4 7

3

5 6 8

9

Figure 8: Targeting storage or PROM through an application, ...

Example: The cracker had access to a keyboard on a console with a shell
opened. She now can access to files on the hard disk, with the consent of the
kernel.

9

2.1.4 Targeting an application through an accessible application

If an application that can be accessed is not interesting, it may be able to
give access to other applications, either directly through shared memory (10)
or using special system calls like kill() or ptrace() (11,12). If no memory is
already shared, which is almost always the case, the MMU will prevent any ap-
plication to access memory space of another application directly. The attacking
application must ask the kernel.

physical security physical security

action vehicle storage PROM, FPGA,...

kernel

application applicationapplication

MMU

human
3

4

5 11 12

10

Figure 9: Targeting an application through another application

Example: The cracker got access to a shell but wanted to trojan a ssh daemon
to get passwords. She uses ptrace() to inject a code into sshd to modify his
behaviour, so that it leaks every password supplied to it.

2.1.5 Targeting the kernel

If we want to reach the kernel, either we can reach it through the action vehicle
(3,4), or we have to bounce with an application.

physical security physical security

action vehicle storage PROM, FPGA,...

kernel

application applicationapplication

MMU

human
3

4

5 13

Figure 10: Targeting the kernel

10

Example: Some special key combinations (magic sysreq keys) can leak process
tables, registers, etc. to the screen.

Example: An error in the network card driver (Etherleak) or in the IP stack
(ICMPLeak) make it leak memory. The cracker only need to send packets and
see answers, without any interaction with an application, only the kernel. The
action path is (3,4).

Example: An attacker get a root shell and can attack the kernel through
loadable kernel modules or /dev/kmem. The path is (3,4,5,13).

2.1.6 Synthesis

All the paths we have previously seen describe the ways an attacker have to
take to reach a given target on a machine. Except the physical only attacks
that use paths 1 and 2, and the shared memory case that uses path 10, they
all go through the kernel. This is a good point in favor of an approach where
kernel enforces the security policy.

But not every path can be well filtered. The (4,5) path cannot really do any-
thing, because it is all about data that are interpreted by an application, that
the kernel cannot understand.

Moreover, the kernel is directly exposed to attacks. The MMU will protect it
against direct access to its memory or to hardware, but it is in direct relation
with the action vehicle and can also be attacked using communications ways
between applications and itself. We have to make the hypothesis that these
interfaces with untrusted world are bug-less. It will never be the case, but we
can consider that in a first approximation.

2.2 Defending kernel space

2.2.1 Attacks coming through the action vehicle

These attacks are those which hit the kernel from the hardware side : network
attacks that target bugs in the network stack, console attacks with magic keys.
Kernel cannot do a lot to prevent them from happening, except to be as bug
free as possible.

2.2.2 Attacks coming from user space

These attacks are those which hit the kernel from the logic side. They essentially
come through system calls, or their use on special files or procfs files.

11

If we assume that there is no way to exploit the system call interface, the entry
points to kernel space, which are opened by the kernel itself, are

• /dev/mem, /dev/kmem,

• /dev/port, ioperm(), iopl(),

• create module(), init module(),

• reboot()

For example, the door to /dev/mem, /dev/kmem and /dev/port can be locked
in a single point of the Linux kernel :

s t a t i c i n t open po r t (s t r u c t i node ∗ i node , s t r u c t f i l e ∗ f i l p)
{

r e tu rn capab l e (CAP SYS RAWIO) ? 0 : −EPERM;
}

If you always return -EPERM or if you make capable() return false, these entry
points will be closed.

The same can be done for the module insertion control :

unsigned long s y s c r e a t e modu l e (const char ∗ name user , s i z e t s i z e)
{

char ∗ name ;
long namelen , e r r o r ;
s t r u c t module ∗mod ;
i f (! capab l e (CAP SYS MODULE))

r e tu rn −EPERM;
[. . .]
}

The reboot() system call is a special case. It can be used to replace the kernel
with a new one, through a complete reboot of the machine. Thus, it is a threat
to kernel space. But the rebooting process is an almost user space only process.
If nothing is done to prevent this to happen, the reboot() system call will be
called (and denied) when there is no more processes running.

2.3 Filtering in kernel space

2.3.1 What to protect

We have to protect a lot of different things, that we can categorize.

12

What lives in memory Lot of very interesting things can be found in mem-
ory and nowhere else. For example, the cryptographic key of a crypted partition,
which is itself protected by a passphrase on disk, is in clear text in memory. We
also find passwords that are in memory only the time to be checked, clear ver-
sions of documents, firewalling rules, network communications, interesting facts
on what is going on. This must be protected from a cracker’s eye.

Moreover, lots of things must also be protected from her hand. She could modify
the behaviour of programs, injecting code, to transform them into password
collecting programs or key loggers or spies.

What lives on disks or tapes Files must be protected from being read
or tampered with, to avoid data stealing, behaviour modifications, or disinfor-
mation. As files must be accessed for normal operations, this is achieved by
compartmentalization.

Meta-data (filesystems, partition tables) or boot loaders must also be protected.

Hardware Lots of devices must be protected from crackers. If they can have
a raw access to the disk controller, they will bypass every high level control.
They must not be able to reach directly any hardware, as they could use it to
steal information (for example, grabbing what is in the video card memory), or
damage devices. PROMs like the BIOS chip, FPGAs that we find in some audio
or video devices, and nowadays reprogrammable CPU are sensitive targets that
must be taken out of the reach of crackers.

2.3.2 How to protect

We have seen in section 2.1 that every attack, except the physical ones, has to
ask the kernel either to mediate the commands, or to give it the permission to
reach directly its target (ioperm(), . . .).

All these things are done via only one interface : the system call interface. Some
system calls are too generic for them to be able to enforce the whole security
policy (for example write()), so that some of the decision process may be
delayed to its extensions in device drivers, or any specific functions it may call.
But the main idea is that everything will go through the system call interface,
and most of the accesses can be processed there.

So, we have to modify consistently the behaviour of the system calls for them
to be able to enforce a complete security policy.

A modular architecture A good way to do so is to use a modular architec-
ture to control system calls. Enforcer components would be integrated to the
original system calls. Each time a system call is issued, the enforcer component

13

will ask a decider component whether the system call must be granted or denied.
The decider component is the one that know about the security policy and take
its decisions accordingly. The enforcer component will then enforce the decision
of the decider component.

syscallapp

component
decider

component
enforcer

Figure 11: A modular architecture to control system calls

With this architecture, lots of access control policies (DAC, MAC, ACL, RBAC,
IBAC, . . .) can be implemented, switched and combined, without any change
in the enforcer components. Only the decision process is affected.

The enforcer component The anatomy of a system call is represented on
figure 12. When an application issues a system call, a specific instruction is
used (interrupt gate or call gate), so that the processor can safely switch from
the user mode to the privileged kernel mode. Then, an entry point which is
common to every system calls is executed. Its role is mainly (but not only) to
call to the system call that has been asked for. When the system call returns,
the dispatcher code gets the hand back, and concludes the call.

kill()

open()

chmod()

execve()

socketcall()

code

dispatchingapp app

user space kernel space user space

dispatching

code

Figure 12: Anatomy of a system call

Knowing that, we can see two ways for adding the enforcer component. Either
we do system call interceptions, i.e. we add it to the dispatching code and
intercept all the system calls with one modification, or we modify each of the
numerous interesting system calls.

14

System call interception The system call interception is done in the dis-
patcher code. Only one modification has to be done to intercept every system
calls. This means a very low cost patch, and a very generic interception mech-
anism.

The drawbacks are that this piece of code often have to be architecture depen-
dent, and last but not least, that there is a kind of duplication of every system
call, because parameters are in their raw form. They have to be interpreted and
checked before being submited to the decider component.

Here is, as an example, a part of the enforcer component of the Medusa DS9
project [PZO], from the file linux/arch/i386/kernel/entry.S.

[. . .]
GET CURRENT(%ebx)
cmpl $ (NR s y s c a l l s),% eax

jae badsys

#i f d e f CONFIG MEDUSA SYSCALL
/* cannot change: eax=syscall , ebx=current */

b t l %eax , m e d s y s c a l l (%ebx)
j nc 1 f
push l %ebx

push l %eax

c a l l SYMBOL NAME(medu s a s y s c a l l wa t c h)
cmpl $1 , % eax

popl %eax

popl %ebx

j c 3 f
jne 2 f

1 :
#end i f

te s tb $0x20 , f l a g s (%ebx) # PF TRACESYS
jne t r a c e s y s

System call modification The system call modification consists in modify-
ing each system call that has to be controled to implement a consistent security
policy.

The big advantage of this way of doing is that all system call parameters already
interpret and check their parameters. We only have to use them when they are
ready and ask our question to the decider component. Moreover, once we have
decided to modify a system call, we can do more than only adding 3 lines :
we can also tune the system call for a better integration of our access control
mechanism.

The drawback is that there are a lot of system calls (more than 200 for Linux)
and a lot of them have to be patched.

15

One example of system call modification in the LIDS [XB] patch shows how
much the enforcer component benefits from the checks and decodings done in
the begining of the system call. It can for example directly use the nameidata

structure whereas the parameter was a filename.

a sm l i nkage long s y s u t ime (char ∗ f i l e n ame , s t r u c t ut imbuf ∗ t imes)
{

i n t e r r o r ;
s t r u c t nameidata nd ;
s t r u c t i node ∗ i node ;
s t r u c t i a t t r newat t r s ;

e r r o r = u s e r p a t h wa l k (f i l e n ame , & nd) ;
i f (e r r o r)

goto out ;
i node = nd . d en t r y−>d i n od e ;

e r r o r = −EROFS;
i f (IS RDONLY(inode))

goto dput and out ;
#i f d e f CONFIG LIDS

i f (l i d s l o a d && l i d s l o c a l l o a d) {
i f (l i d s c h e c k b a s e (nd . d en t r y , LIDS WRITE)) {

l i d s s e c u r i t y a l e r t ("Try to change utime of %s" ,
f i l e n ame) ;

goto dput and out ;
}

}
#end i f

/* Don’t worry, the checks are done in inode_change_ok () */

newat t r s . i a v a l i d = ATTR CTIME | ATTR MTIME | ATTR ATIME ;
i f (t imes) {

Here is another example drawn from the Linux Security Modules (LSM) frame-
work [EVW+].

s y s c r e a t e modu l e (const char ∗ name user , s i z e t s i z e)
{

char ∗ name ;
long namelen , e r r o r ;
s t r u c t module ∗mod ;
unsigned long f l a g s ;

i f (! capab l e (CAP SYS MODULE))
r e tu rn −EPERM;

l o c k k e r n e l () ;
i f ((namelen = get mod name (name user , &name)) < 0) {

e r r o r = namelen ;
goto e r r 0 ;

}

16

i f (s i z e < s i z e o f (s t r u c t module)+namelen) {
e r r o r = −EINVAL ;
goto e r r 1 ;

}
i f (f i n d modu l e (name) != NULL) {

e r r o r = −EEXIST ;
goto e r r 1 ;

}

/* check that we have permission to do this */

e r r o r = s e c u r i t y o p s−>module ops−>c r ea t e modu l e (name , s i z e) ;
i f (e r r o r)

goto e r r 1 ;

The set of enforcement components can be seen as a framework where the
decider component can be plugged into.

3 Implementations

This section will be about some of the implementations that have been done
arround these concepts. We will see some of the existing projects in the first
section, and we will focus particularly on the Linux Security Modules in the
second section.

Note that we will not detail all those projects very much. You will get lot more
information on their respective web sites.

3.1 Existing projects

3.1.1 pH: process Homeostasis

This project is not really related to access control mechanisms because it is an
intrusion detection system with couter measure, but it has its place in kernel
security. It is based on very theoritical work from Anil Somayaji and Stephanie
Forrest [SF00] that has become a real project for the Linux kernel [Som].

Some learning methods are used on the order system calls are issued for given
processes. The more a process deviate from its model, the more pH will delay
the execution of the system calls. The result is that crackers that try to divert
an application from its normal behaviour will have to deal with a slower and
slower machine, until been totally blocked.

17

3.1.2 Openwall

The Openwall kernel patch [Des] is a collection of security related features for
the Linux Kernel. These features include :

• Non-executable user stack area

• Restricted links in /tmp

• Restricted FIFOs in /tmp

• Restricted /proc

• Special handling of fd 0, 1, and 2

• Enforce RLIMIT NPROC on execve

This collection of patch does not provide any new access control method, as what
we have seen previously, but their presence strengthen the operating system with
some small kernel behaviour modifications.

3.1.3 GrSecurity

GrSecurity [SD] was originally a port for the 2.4 Linux kernel series of the
Openwall patch, which worked only for Linux 2.2 kernel series. This patch
has evolved a lot. PaX [teaa] has been used instead of the original Openwall
non-executable stack protection, bringing with it lot of other neat hardening
features like Address Space Layout Randomization (ASLR). An ACL system
has been added. Some randomization on PID, TPC XID or TCP sources ports,
and auditing code are also present.

3.1.4 Medusa DS9

Medusa DS9 [PZO] extends the standard Linux security architecture with an
user space authorization server. Its main differences with most other projects
are the fact that it uses system call generic interception (see section 2.3.2), and
the fact that the decider component run in user space as a daemon.

This latter characteristic make it very versatile regarding the implemented ac-
cess control mechanisms. Indeed, programming a very wide range of them is
easier in user space.

But this design make the decider component less protected by the MMU barrier
because it does not lives in kernel space.

18

3.1.5 Systrace

Systrace [Pro] is a very interesting project. It it is avaiable for *BSD kernels
and for Linux kernel. It uses system call interception, and is able to control
which system calls are permitted, and which parameters can be passed to those
system calls. It can also permit privilege elevation on a per system call basis.
It is also able to automatically generate a policy for given processes.

3.1.6 RSBAC

RSBAC (Rule Set Based Access Control) [OFHS] is the meeting of an enforce-
ment framework, named GFAC (general Framework for Access Control) and a
multitude of access control mechanisms.

The different access control mechanisms are implemented as kernel modules,
and two or more can be used at the same time. Among them, we have for
example Mandatory Access Control (MAC), Access Control Lists (ACL), Role

Control (RC), Functional Control (FC), Malware Scan (MS), . . .

The malware scan access control module will scan every binary when it is ex-
ecuted to check whether it contains any malware. This module is worth being
noticed because it is not a very common access control mechanism, and shows
how much versatile the access control modules can be.

3.1.7 LIDS

LIDS (Linux Intrusion Detection System) [XB] is one of the very early kernel
security patches. Some of its specificities are the fact that it has been devel-
opped bottom up, i.e. without any theorical model, and also its rough approach
regarding operating system hardening.

In particular, it had the approach of placing in the kernel everything it needed
to rely on. That is why you can find a little SMTP client and a kind of port
scan detector implemented in the kernel. These functionnalities are very con-
troversial, but they can be disabled at compile time. Another controversial
functionnality is its ability to make processes invisible.

A sealing mechanism has been set up so that all the privileges needed at boot
time (for example, doing a fsck) are definitively removed (as when Egyptian
pyramids were closed) at the end of the boot process.

3.1.8 LoMaC

LoMaC [Fra] stands for low water-mark access control. Its way of working is very
interesting and instructive regarding the good old theoritical integrity models à
la Biba [Bib77].

19

LoMaC considers two integrity levels : high and low. For the initialization,
some directories are tagged as high integrity. The other directories have a low
integrity level. Each time a binary is executed, the process inherits its integrity
level from the directory where the binary was located. Whenever a high integrity
level process opens a low integrity file or an internet socket, it becomes a low
integrity process. A low integrity process cannot open a high integrity file or
signals a high integrity process.

With these very simple and obvious rules, that govern the life of the entire
system, we can mathematically prove by induction that the integrity is always
ensured.

The simplicity of the model is really appealing, but some exceptions soon arise.
Indeed, with this model, we cannot, for example, maintain secure logs. Log
files must be protected. So they must have a high integrity level. So the syslog
program must have a high integrity level. Programs that generate logs can
be low integrity processes, in particular those that open sockets. So, the unix
socket used to collect logs must be a low integrity (special) file. Thus, if syslog
reads this file, it must become a low integrity process, and cannot write into
the log files anymore. This problem cannot be resolved with the simple model.
Exceptions have to be defined. LoMaC can give a special property to some
binaries, which consists in permitting them to read low integrity files while
being high integrity processes.

3.1.9 SE Linux

Here are very few words about the Security Enhanced Linux project (SE Linux)
[Teab]. This is a NSA funded project, even if most of the people working on it
do not work for the NSA anymore.

The project is based on the Flexible architecture security kernel (Flask). This is
an access control framework, very similar to RSBAC’s Generic Framework for

Access Control (GFAC) (see section 3.1.6).

The most unique feature of SE Linux in regard with other projects is the at-
tention that has been paid about the change of the access control policy in the
middle of operation, and in particular the access revocation.

3.2 Linux Security Modules

The Linux Security Modules project was born after a SE Linux presentation by
Peter Loscocco at the San Jose Kernel Summit, in 2001.

Linus was convinced that something had to be done regarding access controls,
but did not want to choose specifically one project. They are so many access
control mechanisms and so many needs that it is not possible to find a one size

fits all mechanism.

20

He decided instead to develop a generic framework, modular enough to enable
people to write access control mechanisms as loadable kernel modules (LKM).
The LSM project was born.

The framework took the shape of a set of hooks in the Linux kernel, in order
to branch on them different kinds of access control mechanisms. We now find
running implementations of SE Linux, LIDS and DTE that use this framework.

3.2.1 Security hooks

As we have seen previously, LSM use the system call modification method.
A set of hooks has been inserted at key places in the Linux kernel. Most of
them are decision hooks, which means that they are called to take a decision
about granting or not the execution of a given operation. But, in order to
make a decision, keeping track of some data related to processes, inodes, etc. is
sometimes necessary.

Thus, other kind of hooks have been inserted whose goal is to provide entry
points at other key locations to allocate and free security data in some well
chosen structures like the task struct structure or the inode structure.

3.2.2 Stacking modules

We have seen previously that RSBAC was able to run multiple access control
mechanisms at the same time.

LSM also have a mechanism that enable them to run more than one security
module at the same time. This is called stacking. Indeed, once the first module
is in place, the second module will have to register itself to the first. The first
module may not support to have another module on its back, but if it does so,
it will be responsible for transmiting decision questions to it, and will have the
possibility not to listen to it.

3.2.3 Testing the LSM framework consistency

One of the biggest problems of access control policies or frameworks is to be
able to prove their consistency. In the case of very complex systems like Linux
and the LSM, the consistency cannot be proven, but some interesting works
[ZEJ] using statistical methods have brought a good confidence in the LSM
framework.

21

Conclusion

The near future of Linux kernel security seems to be with the LSM, which
have been integrated in the 2.6 kernels. But the LSM framework does not
enable everything to be done. This framework is very oriented on access control
mechanisms. They still lack some auditing capabilities. Moreover, other security
mechanisms like those present in PaX, will be very difficult to integrate, even
if they also have a good impact on security. So these approaches need to be
mixed up.

Whatever happens, the future of operating system security seems to rely a lot
on kernel level security.

References

[Bib77] Kenneth J. Biba. Integrity considerations for secure computer systems.
Technical Report 3153, MITRE, 1977.

[Des] Solar Designer. Linux kernel patch from the Openwall Project. http:
//www.openwall.com/linux/.

[EVW+] Antony Edwards, Chris Vance, Chris Wright, Greg Kroah-Hartman,
Huagang Xie, James Morris, Lachlan McIlroy, Richard Offer, Serge
Hallyn, Stephen Smalley, and Wayne Salamon. Linux Security Mod-
ules. http://lsm.immunix.org/.

[Fra] Timothy Fraser. LOMAC: MAC You Can Live With. http://

opensource.nailabs.com/lomac/.

[HB95] L. Halme and R. Bauer. Aint misbehaving - a taxonomy of antiin-
trusion techniques. In Proceedings of the 18th National Information

Systems Security 14 Conference, pages 163–172. National Institute of
Standards and Technology/National Computer Security Center, 1995.

[OFHS] Amon Ott, Simone Fischer-Hübner, and Morton Swimmer. Rule Set
Based Access Control. http://www.rsbac.org.

[Pro] Niels Provos. Systrace - interactive policy generation for system calls.
http://www.citi.umich.edu/u/provos/systrace/.

[PZO] Milan Pikula, Marek Zelem, and Martin Ockajak. Medusa DS9 secu-
rity system. http://medusa.fornax.sk/.

[SD] Bradley Spengler and Michael Dalton. GrSecurity. http://www.

grsecurity.org/.

[SF00] Anil Somayaji and Stephanie Forrest. Automated response using
System-Call delays. pages 185–198, 2000.

22

[Som] Anil Somayaji. pH: process Homeostasis. http://www.scs.carleton.
ca/~soma/pH/.

[teaa] PaX team. Homepage of the PaX team. http://pageexec.

virtualave.net/.

[Teab] SE Linux Team. Security Enhanced Linux. http://www.nsa.gov/

selinux/.

[XB] Huagang Xie and Philippe Biondi. Linux Intrusion Detection System.
http://www.lids.org/.

[ZEJ] X. Zhang, A. Edwards, and T. Jaege. Using CQUAL for static analysis
of authorization hook placement. In USENIX Security Symposium,
San Francisco, CA, August 2002.

23

	Why ?
	Context
	A new security model
	Interlude : the mice and the cookies
	Security models comparisons

	Conclusion

	How ?
	Taxonomy of action paths
	Targeting storage or PROM directly
	Targeting an application directly
	Targeting storage or PROM through an application
	Targeting an application through an accessible application
	Targeting the kernel
	Synthesis

	Defending kernel space
	Attacks coming through the action vehicle
	Attacks coming from user space

	Filtering in kernel space
	What to protect
	How to protect

	Implementations
	Existing projects
	pH: process Homeostasis
	Openwall
	GrSecurity
	Medusa DS9
	Systrace
	RSBAC
	LIDS
	LoMaC
	SE Linux

	Linux Security Modules
	Security hooks
	Stacking modules
	Testing the LSM framework consistency

