
Kernel appr oach for Security
—

Open Sour ce Developper s’ European Meeting

Philippe Biondi

—

Webmotion Inc.

2 février 2001

Outline 1

Aim

Context

Trustfulness

Conclusion

Technical description

Design

Untamperability

Unbypassability

Existing projects

Openwall, Medusa, RSBAC, NSA SE Linux, LIDS

Conclusion

GACI

WebMotion Inc

Outline 2

Aim

Context

Trustfulness

Conclusion

Technical description

Design

Untamperability

Unbypassability

Existing projects

Openwall, Medusa, RSBAC, NSA SE Linux, LIDS

Conclusion

GACI

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 3

We are facing

Fun/hack/defacing

Tampering

Resource stealing

Data stealing

Destroying

DoS

. . .

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 4

We must ensure

Confidentiality

Data integrity

Availability

What we must do to ensure all of this :

We define a set of rules describing the way we handle,
protect and distribute information.

This is called a security policy.

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 5

To enforce our security policy, we will use some security code

Tripwire, AIDE, for data integrity

SSH, SSL, IP-SEC, cryptography for confidentiality

Password, secure badge, biometric access controls

. . .

Can we trust them ?

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 6

The fortress built upon sand — D. Baker – Proceedings of the New Security Paradigms Workshop

User space is untrusted and can take control of the kernel space
(module insertion, /dev/kmem, . . .)

kernel space is also untrusted :

trustedhardware

kernel space

untrusted

space
user

sendmail

tripwire

ssh

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 6

The fortress built upon sand — D. Baker – Proceedings of the New Security Paradigms Workshop

User space is untrusted and can take control of the kernel space
(module insertion, /dev/kmem, . . .)

kernel space is also untrusted :

trustedhardware

kernel space

untrusted

space
user

sendmail

tripwire

ssh

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 7

Security must be built layer by layer.

Each layer is built with the hypothesis the underlayer is trusted.

It is not worth building security applications on untrusted layers

We need :

trusted

untrusted

hardware

user space

kernel space

Why don’t we want user space to be trusted ?

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 8

The mice and the cookies

Facts :

We have some cookies in a house

We want to prevent the mice from eating the cookies

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 9

The mice and the cookies

Solution 1 : we protect the house

too many variables to cope with (lots of windows, holes, . . .)

we can’t know all the holes to lock them.

we can’t be sure there weren’t any mice before we closed the
holes

This protection can’t be trusted.

Solution 2 : we put the cookies in a metal box

we can grasp the entire problem

if we trust the metal box, this solution has a good trusting level

the cookies don’t care wether mice can break into the house

This protection can be trusted

WebMotion Inc

Aim Conte xt | Trustfulness | Conc lusion 10

To enforce our security policy, we need to add code to

protect the kernel and the code itself
trusted kernel space
untamperability

protect other code/data involved in the security policy
mandatory controls
unbypassability

WebMotion Inc

Outline 11

Aim

Context

Trustfulness

Conclusion

Technical description

Design

Untamperability

Unbypassability

Existing projects

Openwall, Medusa, RSBAC, NSA SE Linux, LIDS

Conclusion

GACI

WebMotion Inc

Technics Design | Untamperability | Unbypassability 12

So, we need to

make the kernel space trusted

we protect the kernel and the code itself

we must block everything coming from user space

protect other code/data involved in the security policy

we rely on the fact that we trust kernel space

we add controls on user space

make our code a mandatory way

WebMotion Inc

Technics Design | Untamperability | Unbypassability 13

Why should the last layer be the kernel space ?
Because of the design of the CPU (PMMU),

we have few entry points

untamperability

we can force everything to go through kernel space

unbypassability

WebMotion Inc

Technics Design | Untamperability | Unbypassability 14

The kernel space is unreachable by user space code

The execution of some defined kernel code can be triggered

system calls

devices

procfs

hardware interruptions

Few entry points, opened by the kernel side

/dev/mem, /dev/kmem

/dev/port, ioperm and iopl

insmod and rmmod

reboot and halt

WebMotion Inc

Technics Design | Untamperability | Unbypassability 15

Because of protected mode mechanisms, kernel coders don’t do
buffer overflows programming faults (?).

linux/drivers/char/rtc.c

static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,

unsigned long arg)

{

unsigned long flags;

struct rtc_time wtime;

switch (cmd) {

[...]

case RTC_ALM_SET: /* Store a time into the alarm */

{

unsigned char hrs, min, sec;

struct rtc_time alm_tm;

if (copy_from_user(&alm_tm, (struct rtc_time*)arg,

sizeof(struct rtc_time)))

return -EFAULT;

WebMotion Inc

Technics Design | Untamperability | Unbypassability 16

/dev/mem, /dev/kmem and /dev/port protection :

static int open_port(struct inode * inode,

struct file * filp)

{

return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;

}

WebMotion Inc

Technics Design | Untamperability | Unbypassability 17

Module insertion control :

asmlinkage unsigned long

sys_create_module(const char *name_user, size_t size)

{

char *name;

long namelen, error;

struct module *mod;

if (!capable(CAP_SYS_MODULE))

return -EPERM;

[...]

WebMotion Inc

Technics Design | Untamperability | Unbypassability 18

Reboot/halt can’t be forbidden :

UPS must be able to shutdown

Reboot is mostly user space stuff, the kernel just reboot the CPU

No difference with a runlevel change

We need to guarantee a safe boot sequence, which is a huge
problem

WebMotion Inc

Technics Design | Untamperability | Unbypassability 19

Boot sequence

POST Console vulnerable

Boot loader Console vulnerable / rely on boot disk

Kernel Rely on boot disk (kernel image)

booting process (init, rc scripts, daemons, . . .)

working state

WebMotion Inc

Technics Design | Untamperability | Unbypassability 20

What must we protect ?

What is in memory

Processes

Kernel configuration (firewall rules, etc.)

What is on disks or tapes

Files

Metadata (filesystems, partition tables, boot loaders, . . .)

Hardware

EPROMs, configurable hardware, . . .

WebMotion Inc

Technics Design | Untamperability | Unbypassability 21

User space can’t access these items without asking the kernel

system calls are a place of choice for controlling accesses

WebMotion Inc

Technics Design | Untamperability | Unbypassability 22

We’ll use a modular architecture to control syscalls : there will be

An enforcer component

A decider component

Lots of access control policies (DAC, MAC, ACL, RBAC,
IBAC, . . .)

syscallapp

component
decider

component
enforcer

WebMotion Inc

Technics Design | Untamperability | Unbypassability 23

How to add the enforcer code to the syscalls ?

Syscall interception

Syscall modification

System call anatomy :

kill()

open()

chmod()

execve()

socketcall()

code

dispatching

kernel space

app app

user spaceuser space

dispatching

code

WebMotion Inc

Technics Design | Untamperability | Unbypassability 24

Syscall interception example : Medusa DS9
linux/arch/i386/kernel/entry.S

[...]

GET_CURRENT(%ebx)

cmpl $(NR_syscalls),%eax

jae badsys

#ifdef CONFIG_MEDUSA_SYSCALL

/* cannot change: eax=syscall, ebx=current */

btl %eax,med_syscall(%ebx)

jnc 1f

pushl %ebx

pushl %eax

call SYMBOL_NAME(medusa_syscall_watch)
cmpl $1, %eax

popl %eax

popl %ebx

jc 3f

jne 2f

1:

#endif

testb $0x20,flags(%ebx) # PF_TRACESYS

jne tracesys

[...]

WebMotion Inc

Technics Design | Untamperability | Unbypassability 25

Syscall interception advantages

general system

low cost patch

Drawbacks

kind of duplication of every syscall

need to know and interpret parameters for each different
syscall

architecture dependent

WebMotion Inc

Technics Design | Untamperability | Unbypassability 26

Syscall modification example : LIDS
linux/fs/open.c

asmlinkage long sys_utime(char * filename, struct utimbuf * times)

{

int error;

struct nameidata nd;

struct inode * inode;

struct iattr newattrs;

error = user_path_walk(filename, &nd);

if (error)

goto out;

inode = nd.dentry->d_inode;

error = -EROFS;

if (IS_RDONLY(inode))

goto dput_and_out;

#ifdef CONFIG_LIDS

if(lids_load && lids_local_load) {

if (lids_check_base(nd.dentry,LIDS_WRITE)) {

lids_security_alert("Try to change utime of %s",filename);

goto dput_and_out;

}

}

#endif

/* Don’t worry, the checks are done in inode_change_ok() */

newattrs.ia_valid = ATTR_CTIME | ATTR_MTIME | ATTR_ATIME;

if (times) {

WebMotion Inc

Technics Design | Untamperability | Unbypassability 27

Syscall modification advantages

Syscall parameters already interpreted and checked

Great tuning power. We can alter the part of the syscall we
want.

Drawbacks

Each of the syscall must be altered (near 200 syscalls)

WebMotion Inc

Outline 28

Aim

Context

Trustfulness

Conclusion

Technical description

Design

Untamperability

Unbypassability

Existing projects

Openwall, Medusa, RSBAC, NSA SE Linux, LIDS

Conclusion

GACI

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 29

Collection of security-related features for the Linux kernel.

Non-executable user stack area

Restricted links in /tmp

Restricted FIFOs in /tmp

Restricted /proc

Special handling of fd 0, 1, and 2

Enforce RLIMIT_NPROC on execve

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 30

Medusa DS9

Authors : Marek Zelem Milan Pikula Martin Ockajak

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 31

Extending the standard Linux (Unix) security architecture with a
user-space authorization server.

layer 1

Hooks in the original kernel code

layer 2

kernel space code

called from hooks.

do basic permission checks

check for cached permissions

call the communication layer if necessary

layer 3

communication layer

communicate with a user space daemon

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 32

User space daemon

decider component

Miscellaneous

syscall interception

can force code to be executed after a syscall

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 33

RSBAC

Authors : Amon Ott, Simone Fischer-Hübner, Morton Swimmer

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 34

Rule Set Based Access Control

It is based on the Generalized Framework for Access Control
(GFAC)

All security relevant system calls are extended by security
enforcement code.

Different access control policies implemented as kernel modules

MAC, ACL, RC (role control), FC (Functional Control), MS
(Malware Scan), . . .

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 35

SE Linux

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 36

NSA Security Enhanced Linux

It is based on the Flask architecture
(Flexible architecture security kernel)

Enforcer / decider components

Pays a lot of attention to the change of the access control policy
(revocation)

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 37

LIDS

Authors : Xie Huangang, Philippe Biondi

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 38

Linux Intrusion Detection System

Self-protection

Files protection

Processes protection

Online administration

Special features

Dedicated mailer in the kernel

Scan detector in the kernel

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 39

Self-protection

Modules insertion/deletion, /dev/mem, . . . , ioperm/iopl filtered

Boot process protected

Can forbid the execution of non-protected programs (not
flawless)

Sealing mecanism

fsck or insmod can run when booting

no human intervention is needed to seal the protection

after the seal, we are in the working state. Everything is
locked

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 40

Files protection

MAC-like approach :
lidsadm -A -s /usr/sbin/httpd -o /home/httpd -j

READ

Files identified by VFS device/inode works on every fs

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 41

Processes protection

Rely on the linux capabilities bounding set

Hardware protection

Processes privacy (ptrace, promiscuous mode, . . . can be
forbidden)

Network administration locked

Daemons can be made unkillable

Processes can be made invisible

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 42

Online administration

LIDS can be disabled globally

LIDS can be reconfigured on the fly

LIDS can be totally disabled only for a shell and its children

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 43

Special features

Mailer in the kernel

Can make a network connection (TCP or UDP)

Can send a scriptable session (mail, syslog, . . .)

Does not rely on anything in user space

Scan detector in the kernel

kind-of interrupt driven no load at all

does not need the promiscuous mode

works on every interface

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Lin ux | LIDS 44

LIDS general architecture

Kernel image

working stuff

syslog

Boot stuff

init, rc, daemons

LIDS AC data

lidsadm

procfs stuff

init code

decider
component

stuff
Logging

AC data

enforcer
component

scan
detector

Kernel
Mailer

syscalls

WebMotion Inc

Outline 45

Aim

Context

Trustfulness

Conclusion

Technical description

Design

Untamperability

Unbypassability

Existing projects

Openwall, Medusa, RSBAC, NSA SE Linux, LIDS

Conclusion

GACI

WebMotion Inc

Conc lusion GACI 46

General Access Control Interface

Very young project, at the very beginning

Aims to be the security interface for Linux 2.5

Gathers coders from Medusa, RSBAC and LIDS

WebMotion Inc

