Kernel approach for Security

Outline 1

B Aim
» Context
» Trustfulness

» Conclusion

M Technical description

» Design

WebMoation Inc

Outline 2

B Aim
» Context
» Trustfulness
» Conclusion

M Technical description

» Design

WebMoation Inc

Aim | Trustfulness | Conclusion 3

We are facing

» Fun/hack/defacing

» Tampering

Aim | Trustfulness | Conclusion 4

B We must ensure
» Confidentiality
» Data integrity
» Availability

WebMotion Inc

Aim | Trustfulness | Conclusion 5

To enforce our security policy, we will use some security code
» Tripwire, AIDE, for data integrity

» SSH, SSL, IP-SEC, cryptography for confidentialit

Aim Conte xt | | Conc lusion 6

The fOI‘treSS bU|It upon Sand — D. Baker — Proceedings of the New Security Paradigms Workshop

» User space is untrusted and can take control of the kernel space
(module insertion, / dev/ knem ...)
= kernel space is also untrusted :

kernel space /user
space

WebMotion Inc

Aim Conte xt | | Conc lusion 6

The fOI‘treSS bU”t upon Sand — D. Baker — Proceedings of the New Security Paradigms Workshop

» User space is untrusted and can take control of the kernel space
(module insertion, / dev/ knem ...)
= kernel space is also untrusted :

_kernel,space /user
space

WebMotion Inc

Aim Conte xt | | Conc lusion 7

B Security must be built layer by layer.
B Each layer is built with the hypothesis the underlayer is trusted.
B [t is not worth building security applications on untrusted layers

We need :

kernel space

user space

WebMotion Inc

Aim Conte xt | | Conc lusion 8

The mice and the cookies

B Facts:
» We have some cookies in a house

» We want to prevent the mice from eating the cookies

WebMotion Inc

Aim Conte xt | | Conc lusion 9

The mice and the cookies

B Solution 1 : we protect the house
» too many variables to cope with (lots of windows, holes, .. .)
» we can’'t know all the holes to lock them.

» we can’'t be sure there weren’t any mice before we closed the
holes

WebMotion Inc

Aim Conte xt | Trustfulness | 10

To enforce our security policy, we need to add code to

» protect the kernel and the code itself
= trusted kernel space

Outline 11

B Aim
» Context
» Trustfulness

» Conclusion

B Technical description

» Design

WebMoation Inc

Technics | Untamperability | Unbypassability 12

So, we need to

B make the kernel space trusted

» we protect the kernel and the code itself
» we must block everything coming from user space

WebMotion Inc

Technics | Untamperability | Unbypassability 13

Why should the last layer be the kernel space ?
Because of the design of the CPU (PMMU),

B we have few entry points

Technics Design | | Unbypassability 14

B The kernel space is unreachable by user space code

B The execution of some defined kernel code can be triggered
» system calls
» devices

» procfs

WebMotion Inc

Technics Design | | Unbypassabillity 15

» Because of protected mode mechanisms, kernel coders don’'t do
buffer overflows programming faults (?).

| i nux/drivers/char/rtc.c

static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cnd,
unsi gned | ong arg)
{
unsi gned | ong fl ags;
struct rtc_time wine;

WebMotion Inc

Technics Design | | Unbypassability 16

» [dev/ nmem /dev/ knemand / dev/ port protection :

static int open_port(struct inode * inode,

Technics Design | | Unbypassability 17

» Module insertion control :

asnml | nkage unsi gned | ong
sys_create nodul e(const char *nane_user, size t size)

{

char *nane;

Technics Design | | Unbypassability 18

Reboot/halt can’t be forbidden :
» UPS must be able to shutdown

» Reboot is mostly user space stuff, the kernel just reboot the CPU

WebMotion Inc

Technics Design | | Unbypassability 19

Boot sequence

» POST Console vulnerable

» Boot loader Console vulnerable / rely on boot disk

Technics Design | Untamperabllity | 20

What must we protect ?

B What is in memory
» Processes

» Kernel configuration (firewall rules, etc.)

WebMotion Inc

Technics Design | Untamperabllity | 21

User space can’t access these items without asking the kernel

Technics Design | Untamperabllity |

We’'ll use a modular architecture to control syscalls : there will be
B An enforcer component

B A decider component
» Lots of access control policies (DAC, MAC, ACL, RBAC,

IBAC, ...)
decider
component

enforcer
component

22

WebMotion Inc

Technics Design | Untamperabllity |

B How to add the enforcer code to the syscalls ?
Syscall interception

Syscall modification

B System call anatomy :

chnod()
m dispatching Kill() dispatching
socketcal | ()

code code

WebMotion Inc

23

Technics Design | Untamperabllity | 24

Syscall interception example : Medusa DS9
| 1 nux/ arch/i 386/ kernel /entry. S

[...]
GET_CURRENT(%&bx)
cmpl $(NR_syscal | s), %eax
j ae badsys

#i f def CONFI G_MEDUSA SYSCALL

/* cannot change: eax=syscall, ebx=current */
bt % ax, med_syscal | (%ebx)
jnc 1f

WebMotion Inc

Technics Design | Untamperabllity | 25

B Syscall interception advantages
» general system

» low cost patch

B Drawbacks

WebMotion Inc

Technics Design | Untamperabllity | 26

Syscall modification example : LIDS
| 1 nux/fs/open.c

asm i nkage | ong sys_utine(char * filenanme, struct utinmbuf * tines)
{

int error;

struct nanei data nd;

struct inode * inode;

struct iattr newattrs;

error = user_path_wal k(fil enane, &nd);
if (error)
goto out;

#i f def CONFI G_LI DS
if(lids |load & lids_|ocal |oad) {
if (lids_check _base(nd.dentry, LIDS WRI TE)) {
lids_security alert("Try to change utine of %", fil enane);

got o dput _and_out;

#endi f

Technics Design | Untamperabllity | 27

B Syscall modification advantages
» Syscall parameters already interpreted and checked

» Great tuning power. We can alter the part of the syscall we

Outline 28

B Aim
» Context
» Trustfulness

» Conclusion

B Technical description

» Design

WebMoation Inc

Projects | Medusa | RSBAC | SE Linux | LIDS 29

Collection of security-related features for the Linux kernel.
» Non-executable user stack area

» Restricted linksin/tnp

WebMotion Inc

Projects Openwall | | RSBAC | SE Linux | LIDS 30

Medusa DS9

WebMotion Inc

Projects Openwall | | RSBAC | SE Linux | LIDS 31

Extending the standard Linux (Unix) security architecture with a
user-space authorization server.

M layer 1
» Hooks in the original kernel code

M layer 2
» kernel space code

allel OIT1 NOOK

WebMotion Inc

Projects Openwall | | RSBAC | SE Linux | LIDS 32

B User space daemon

» decider component

Projects Openwall | Medusa | | SE Linux | LIDS 33

WebMotion Inc

Projects Openwall | Medusa | | SE Linux | LIDS 34

Rule Set Based Access Control

M Itis based on the Generalized Framework for Access Control
(GFAC)

M All security relevant system calls are extended by security

WebMotion Inc

Projects Openwall | Medusa | RSBAC | | LIDS 35

SE Linux

’/ WebMotion Inc

Projects Openwall | Medusa | RSBAC | | LIDS 36

NSA Security Enhanced Linux

M It is based on the Flask architecture
(Flexible architecture security kernel)

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Linux | 37

LIDS

Projects Openwall | Medusa | RSBAC | SE Linux | 38

Linux Intrusion Detection System

B Self-protection

M Files protection

Projects Openwall | Medusa | RSBAC | SE Linux | 39

Self-protection
B Modules insertion/deletion, / dev/ nem ..., ioperm/iopl filtered

B Boot process protected

» Can forbid the execution of non-protected programs (not
flawless)

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Linux | 40

Files protection

B MAC-like approach :

Projects Openwall | Medusa | RSBAC | SE Linux | 41

Processes protection

B Rely on the linux capabilities bounding set
» Hardware protection

» Processes privacy (ptrace, promiscuous mode, ...can be

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Linux | 42

Online administration

» LIDS can be disabled globally

Projects Openwall | Medusa | RSBAC | SE Linux | 43

Special features

B Mailer in the kernel
» Can make a network connection (TCP or UDP)
» Can send a scriptable session (mail, syslog, ...)

In user space

» Does not rely on anythin

WebMotion Inc

Projects Openwall | Medusa | RSBAC | SE Linux | 44

LIDS general architecture

procfs stuff

decicr
component scan
detector
1

lidsadm

enforcer

— component Loggi ng

stuff

WebMotion Inc

Outline 45

B Aim
» Context
» Trustfulness

» Conclusion

B Technical description

» Design

WebMoation Inc

Conclusion 46

General Access Control Interface

» \ery young project, at the very beginnin

